Adaptive linear prediction of radiation belt electrons using the Kalman filter

نویسندگان

  • E. J. Rigler
  • D. N. Baker
  • R. S. Weigel
  • D. Vassiliadis
  • A. J. Klimas
چکیده

[1] Prior studies have examined the time-stationary (and quasi-stationary) dynamic response of relativistic electrons in the Earth’s outer radiation belt to changes in solar wind bulk speed using linear prediction filters [Baker et al., 1990; Vassiliadis et al., 2002]. For this study, we have implemented an adaptive system identification scheme, based on the Kalman filter with process noise, to determine optimal time-dependent electron response functions. The nonlinear dynamic response of the radiation belts can then be tracked in time by recursively updating the optimal linear filter coefficients as new observations become available. We demonstrate a significant improvement in zero-time-lag electron log-flux ‘‘predictions’’ relative to models that are based on time-stationary linear prediction filters, while incurring only a slight increase in computational complexity. We conclude by discussing modifications necessary for an operational specification and forecast model, including the assimilation of real-time data, more sophisticated model structures, and a more practical gridded description of the radiation belt state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

Electron Lifetimes in the Outer Radiation Belt

3 Data assimilation aims to smoothly blend incomplete and inaccurate ob-4 servational data with dynamical information from a physical model, and be-5 come an increasingly important tool in understanding and predicting me-6 teorological, oceanographic and climate processes. As space-borne observa-7 tions become more plentiful and space-physics models more sophisticated, 8 dynamical processes in ...

متن کامل

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

Identifying the radiation belt source region by data assimilation

[1] We describe how assimilation of radiation belt data with a simple radial diffusion code can be used to identify and adjust for unknown physics in the model. We study the dropout and the following enhancement of relativistic electrons during a moderate storm on 25 October 2002. We introduce a technique that uses an ensemble Kalman filter and the probability distribution of the forecast ensem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004